
Instruction of functions of R package KINSIMU

Guanju Ma, Shujin Li

November 14, 2024

Contents
1 Brief introduction 2

2 Install and library the KINSIMU package 2

3 Functions in the package 2
3.1 ‘EvaluatePanel()’ . 2
3.2 ‘pairsimu()’ . 4
3.3 ‘pedisimu()’ . 6
3.4 ‘LRparas()’ . 7
3.5 ‘trioPI()’ . 10
3.6 ‘IICAL()’ . 12
3.7 ‘LRhsip()’ . 13
3.8 ‘LRgpgcam()’ . 15
3.9 ‘logLR()’ . 17
3.10 ‘testsimulation()’ . 20
3.11 ‘outputCSV()’ . 21

4 Data involved 21
4.1 FortytwoSTR . 21
4.2 pediexample . 22

1

1 Brief introduction
The R package KINSIMU has been developed using the unified formulae for the assessment and simulation of
specific panels in kinship analysis, we hereby present instructions of several functions in the package.

2 Install and library the KINSIMU package
The authors have uploaded the package to CRAN, making it able to be install directly with the following code:

1 install .package("KINSIMU")

Otherwise, the repository file "KINSIMU.0.1.1.tar.gz" is provided as File S2 of this study, and the package
can be installed using the subsequent code after downloading it:

1 utils ::: menuInstallLocal ()

After installing the package, it can be loaded with the following code:
1 library ("KINSIMU")

3 Functions in the package
In this section, we will introduce the functions contained in the KINSIMU package. Each function introduction
will consist of four parts: (i) input arguments; (ii) output values; (iii) detailed description of the function’s
process, presented as algorithms. Code and methods for key steps will be labeled with †, ‡, # and § in the
algorithms, followed by detailed explanations. (iv) Examples of the function.

There would be several common abbreviations in this section:
nl: number of loci in the panel, used in ‘EvaluatePanel()’, ‘testsimulation()’ and ‘logLR()’ functions;
ss: sample size to be simulated in ‘pairsimu()’,‘pedisimu()’ and ‘testsimulation()’ functions;
na: number of alleles on a locus;
np: number of individual to be simulated in ‘pedisimu()’ function;
stop in algorithms: Terminate the function without executing any subsequent code.

3.1 ‘EvaluatePanel()’
The function would transfer the input allele frequency data (in a .csv file or a data frame) into form usable for
other functions and then calculate several population parameters based on the frequency data for each marker.

Input arguments 4 input arguments are needed for the function, one of which is optional.
• type: The type of input data, there are 2 acceptable type of input for the argument:

– ‘csv’: a .csv file containing the allele frequency data in the panel. In such a file, cell ‘A1‘ should be
‘allele’ and the other cells in the first row should contain the names of each marker. The names of all
detected allele types in the panel should be listed in the first column and the corresponding frequency
data on each marker should be contained in the cells according to marker names and allele names. If the
input argument ‘raremode’ is set as ‘ISFG’ or ‘1/2N’ and the input argument ‘Nind’ is set as ‘lastrow’,
the sample size in the population survey should be listed in the last row per marker;

– ‘df ’: a data frame with the similar structure with the aforementioned .csv file, except that the word ‘allele’
and marker names should be the column names;

• strpath: The pathway of the .csv file or the name of the data frame, according to the set of argument type.

2

• raremode: The mode of calculation method of rare allele frequency at each locus. There are 3 acceptable
type of input for the argument

– ‘ISFG’: The default input, rare allele frequency data is calculated based on the population survey results,
i.e., prare = (na + 1)

/
(2N + 1) if na and N denote the number of allele types detected and the sample

size, respectively;

– ‘MAF’: The minimum allele frequency is taken as the rare allele frequency;

– ‘1/2N’: The minimum allele frequency a population survey with a sample size N can provide is taken as
the rare allele frequency;

– <numeric>: A number set as the rare allele frequency, the function would report error if the number > 1;

• Nind: (Optional) Mode of sample size data presentation, only need when raremode is set as ‘ISFG’ or ‘1/2N’.
There are 2 acceptable types of input for the argument:

– ‘lastrow’: The sample size data is given in the last row of the .csv file;

– <integer>: An integer number can be input and taken as the sample size on all markers.

• Th: The threshold for the difference in allele frequency sum at a locus with 1, to detect data error from
rounding error when the frequency sum does not equal 1. Loci exceeding this threshold will be excluded from
the calculation.

Output values A list of 4 vectors would be output:
• afmatrix: A list of nl data frames that hold information of the allele frequencyfor each marker. Each data

frame is structured with a single column and a row count of na. The row names of the data frames list the
names of the alleles.

• rare: A data frame containing rare allele frequencies on each marker;
• indicators: A data frame containing forensic parameters for each marker, which would be detailed introduced;
• panelpara: A data frame containing population parameters for the whole panel, with the form of log10(1-

paramter) to avoid displaying the parameters as 1 because they are too close to 1.

Detailed description Upon performing an analysis of a specified .csv file or data frame, this function extracts
allele frequency data at different loci and evaluate the population parameters for the specific kit using the
provided data. The complete procedure is detailed in Algorithm 1.

Algorithm 1: EvaluatePanel()
1 Input basic data (allelefreq) from a .csv file or a data frame pointed by argument ‘strpath’, according to ‘type’ set;
2 Conduct formal checks on basic data, stop if any error exists;
3 if Nind=’lastrow’ then
4 Take the last row of allelefreq data frame as n_of_indi data frame;
5 Take the rest rows as allelefreq data frame;
6 else if Nind=<integer> then
7 Repeat the Nind value as n_of_indi data frame;
8 end
9 Delete loci for which the difference between the sum of allele frequencies and 1 exceeds Th;

10 Calculate population parameters for each locus and generate the indicators data frame; /* † */
11 Calculate combined population parameters for the whole panel and generate the panelpara data fram;
12 Extract/calculate rare frequency and generate the rare data frame according to raremode; /* ‡ */
13 Divide the allelefreq data frame into nl single data frames and delete rows with 0 values for each;
14 Integrate the nl data frames into a list named afmatrix;
15 Integrate the four output vectors into a list Result and output the list.

† The indicators data frame contains 12 population parameters computed for each locus:

3

Table S1: Parameters presented in indicator data frame
No. Name Note Equation
1 na The number of allele types on a marker –
2 Hu The unadjusted heterozygosity Hu = 1 − S2

∗

3 Ha The adjusted heterozygosity Ha = Hu × na
na−1

4 MAF The minimum allele frequency –
5 PM The probability of randomly match PM = 2S2

2 − S4
6 DP The discrimination power DP = 1 − PM
7 PED Probability of exclusion (PE) in duo paternity cases PED = 1 − 4S2 + 4S3 + 2S2

2
8 PET PE in trio paternity cases PET = 1 − 2S2 + S3 + 2S4 − 3S5 − 2S2

2 + 3S2S3
9 PEDD PE in double doubt parentage cases PEDD = 1 + 4S4 − 4S5 − 3S6 − 8S2

2 + 2S2
3 + 8S2S3

10 RGE Mean Power of Random Grandparents Excluded∗∗
RGE =1 − 4S2 + 6S3 − 17S5 + 28S6 − 15S7 − 4S2

2 + 18S2S3

− 16S2S4 + 5S2S5 − 12S2
3 + 10S3S4

11 RGENM RGE without the assistant with the mother
RGENM =1 − 8S2 + 16S3 − 26S4 + 30S5 − 15S6 + 12S2

2

− 24S2S3 + 8S2S4 + 6S2
3

12 PIC polymorphism information content PIC = 1 − S2 − S2
2 + S4

∗ Sx represents the sum of all frequencies on a locus to the power of x, i.e., Sx =
∑

i px
i ;

∗∗ RGE is calculated for grand-parentage identification involving four participants: a child, the child’s biological mother and a couple
of individuals who are alleged as the child’s grandparents, i.e., the parents of the child’s father.

‡ The data frame panelpara includes 6 types of total (T) or cumulative (C) population parameters are
calculated for the whole panel: TDP, CPED, CPET, CPEDD, CRGE, CRGENM. The calculation method of
these parameters are similar, if set specific parameter on the ith marker as Pi, the total parameter T P , then

T P = 1 −
∏

i

Pi (S1)

Examples Two examples are given based on a .csv file generated by ‘outputCSV()’ function. The two examples
would result in a same output, which is included in the package as data “FortytwoSTR”.

1 #A .csv file can be output with FortytwoSTR data
2 path<−tempdir()
3 outputCSV(FortytwoSTR,file.path(path,’ data .csv’))
4 #Example 1, ’df’ type, by read the csv file into a data frame
5 allele _data <− read.csv(file = file .path(path,’ data .csv’) , header = TRUE)
6 STR42<− EvaluatePanel(type = ’df’ , strpath = allele _data,raremode = "ISFG",Nind = " lastrow ")
7 #Example 2, ’csv’ type, the same evaluation can be done by directly input the csv file
8 STR42_2 <− EvaluatePanel(type = ’csv’ , strpath = file .path(path,’ data .csv’) ,
9 raremode = "ISFG",Nind = " lastrow ")
10 #The data "FortytwoSTR" is generated with these codes.

3.2 ‘pairsimu()’
The function would generate genotype combinations of multiple individual pairs with specific relationships on
an autosomal marker, ignoring mutaion.

Input arguments 4 input arguments are needed for the function:
• af: A data frame of 1 column containing the allele frequency data on the marker with the allele names being

the row names and ‘Freq’ as column name, which can be generated with function ‘‘EvaluatePanel()’’ (e.g.,
‘af=FortytwoSTR$afmatrix[[1]]’) or input with function ‘data.frame(Freq=c(· · ·))’ directly;

• ss: The sample size of the simulation;

4

• delta: The distribution of IBD or Jacquard coefficient of the target relationship, which should be input as a
single row of data with function ‘c()’, the coefficients should be input in order of ‘κ0 → κ2’ or ‘∆1 → ∆9’;

• allelename: The output format setting, There are 2 acceptable types of input for the argument:

– FALSE: The default set, to output the row number of the alleles in the af matrix;

– TRUE: To output allele names, i.e., the row names in the af matrix.

Output value A data frame of 4 columns and ss rows would be output, which denote the genotype combinations
of each pair simulated, the first 2 columns denote individual A and the other 2 individual B.

Detailed description A directly generating strategy is applied in this function:
Algorithm 2: pairsimu()
1 Construct the result data frame in the aforementioned form;
2 if The length of delta is 3 (non-inbred cases) then
3 Randomly generate the genotypes (in form of allele position) of ss individual As; /* † */
4 Generate ss random numbers 1∼4 according to delta set; /* ‡ */
5 Generate genotypes of ss indivdiual Bs;
6 else if The length of delta is 9 (inbred cases) then
7 Randomly generate the first alleles (in form of allele position) of ss individual As; /* † */
8 Generate ss random numbers 1∼9 according to delta set; /* # */
9 Generate the second alleles of ss individual As and genotypes of ss indivdiual Bs;

10 else
11 Report the error of delta setting and stop;
12 end
13 if allelename=‘TRUE’ then
14 Translate the allele positions into allele names; /* § */
15 end
16 Output the result data frame.

† These alleles can be randomly generated with ‘sample()’ function, take the 1st allele of individual A as
example:

1 pop<−1:nrow(af)
2 results $A1<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)

‡ For outbred relationships with κ =
{
κ0,κ1,κ2

}
, there are 4 types of possible IBD genotype of individual

B, (i) xIyI , (ii) bIxI , (iii) aIxI , and (iv) aIbI , the corresponding probabilities of which are κ0, κ1
/

2, κ1
/

2 or
κ2, respectively. Among these IBD genotypes, bIxI can be written as xIbI , which would not affect any of the
following calculations. Thus, the 1st allele of individual B would be IBD to the 1st of individual A if situation
(iii) or (iv) happens, while his/her 2nd allele would be IBD to the 2nd of individual A if situation (ii) or (iv)
happens. In other words, the genotypes of individual Bs can be generated according to ‘delta’ value with the
following code:

1 # Randomly generate individual A’s alleles
2 results $A1<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)
3 results $A2<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)
4 # Generate random numbers (RN), with value of 1:4 according to delta distribution
5 # Each number stands for a situation of individual B’s IBD genotype
6 RN<−sample(x=1:4,size=ss,replace=TRUE,prob=c(delta[1],delta[2] / 2, delta [2] / 2, delta [3]))
7 # T1: numbers lager than 2 in RNs, i.e ., situation (iii) or (iv) happens
8 T1<−as.double(RN>2)
9 # T2: even numbers in RNs, i.e., situation (ii) or (iv) happens
10 T2<−as.double(RN%%2==0)
11 # Transfer situations into individual B’s alleles
12 results $B1<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)*(1−T1)+results$A1*T1
13 results $B2<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)*(1−T2)+results$A2*T2

5

For inbred relationships, the two alleles of individual A may be IBD to each other, i.e., only the first alleles
of each individual A can be generated randomly based on the allele frequency data and other 3 alleles should be
generated according to the ∆ distribution, which is more complex compared to outbred cases. The corresponding
code can be written as follows:

1 results $A1<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)
2 RN<−sample(x=1:11,size=ss,replace=TRUE,prob=c(delta[1],delta [2], delta [3], delta [4], delta [5] / 2, delta [5] / 2, delta [6], delta [7], delta [8] / 2, delta [8] / 2,

delta [9]))
3 T0<−as.double(RN>4)
4 T1A<−as.double(RN%in%c(1,3,5,8,9))
5 T1B<−as.double(RN==6)
6 T2A<−as.double(RN%in%c(1,8,10))
7 T2B<−as.double(RN%in%c(2,5,6,7))
8 results $A2<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)*T0+results$A1*(1−T0)
9 results $B1<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)*(1−T1A−T1B)+results$A1*T1A+results$A2*T1B
10 results $B2<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)*(1−T2A−T2B)+results$A2*T2A+results$B1*T2B

§ If argument allelename is set as TRUE, the allele position can be translated to allele names with the
following codes:

1 an<−as.data.frame(as.numeric(row.names(af)))
2 results $A1<−an[results$A1,]
3 results $A2<−an[results$A2,]
4 results $B1<−an[results$B1,]
5 results $B2<−an[results$B2,]

Example Three examples are given, simulating 3 types of individual pairs based on the 1st STR in the 42 ones
in ‘FortytwoSTR’ data set, setting ss=10,000:

1 # Extract allele frequency on the locus
2 af = FortytwoSTR$afmatrix[[1]]
3 # simulating 10,000 unrelated pairs
4 a<−pairsimu(af = af , ss = 10000, delta = c (1,0,0) , allelename = FALSE)
5 # simulating 10,000 parent−child pairs
6 b<−pairsimu(af = af , ss = 10000, delta = c (0,1,0) , allelename = FALSE)
7 # simulating 10,000 full −sibling pairs
8 c<−pairsimu(af = af , ss = 10000, delta = c (0.25,0.5,0.25) , allelename = FALSE)

3.3 ‘pedisimu()’
The function would genotype combinations of multiple pedigrees with specific relationships on an autosomal
marker.

Input arguments 7 input arguments are needed for the function, 2 of which are optional.
• af: A data frame of similar to af in ‘pairsimu()’ function;
• ss: The sample size of the simulation;
• pedi: a data frame containing the pedigree structure information, with 3 columns (“Person”, “Father” and

“Mother”) and np rows;
• random_name: The name of random individual, with a default of "RI";
• muf: (Optional) father-child mutation rate, with default set of 0, only need if allelename set as TRUE;
• mum: (Optional) mother-child mutation rate, with default set of 0, only need if allelename set as TRUE;
• allelename: Similar to allelename in ‘pairsimu()’ function.

Output value A data frame of ss rows and 2×np columns. Each pair of columns contains alleles of an
individual, with the individuals sorted in the same order as in the pedi data frame.

6

Detailed description Genotype data is generated sequentially according to Algorithm 3:
Algorithm 3: pedisimu()
1 Conduct formal checks on the data frame pedi, and stop if any error exists;
2 Extract np as the row number of pedi data frame;
3 Construct result data frame with ss rows and 2×np columns;
4 for i in 1:np do
5 if There is no individual in “Person” column named identical as the father of ith individual then
6 Randomly generate the ith individual’s paternal allele according to allelename set; /* † */
7 else
8 Set f =the row number of the ith individual’s father in “Person” column;
9 if f≥i then

10 Report error “Father of the ith individual should be defined before him/her” and stop;
11 end
12 Generate the ith individual’s paternal allele from the fth individual’s genotype; /* ‡ */
13 if muf>0 then
14 Randomly change the alleles according to muf set; /* # */
15 end
16 end
17 Generate the maternal allele of the ith individual with similar process considering mum setting;
18 end

† Alleles without parent setting can be generated with ‘sample()’ function, according to the allelename set.
Take the paternal allele of the ith individual as example:

1 if (isTRUE(allelename)) { results [,2 *i−1]<−sample(x=as.numeric(row.names(af)),size=ss,replace=TRUE,prob=af$Freq)
2 } else {pop<−1:nrow(af)
3 results [,2 *i−1]<−sample(x=pop,size=ss,replace=TRUE,prob=af$Freq)
4 }

‡ If father or mother of the ith individual is set, the corresponding allele can be generated according to the
genetic law, i.e., the two alleles of the father or mother have equivalent probabilities to be inherited. Take the
paternal inheritance of the offspring as example:

1 RN<−sample(x=c(0,1),size=ss,replace=TRUE,prob=c(0.5,0.5))
2 results [,2 *i−1]<− results [,2 *f−1]*RN+results[,2*f]*(1−RN)

To perform mutation, the original alleles of the offspring would be added by a random number within set
{-1,0,1} according to the mutation rate:

1 if (muf>0) { results [,2 *i−1]= results [,2 *i−1]+sample(x=c(−1,0,1), size=ss , replace=TRUE,prob=c(muf/2,1−muf,muf/2))}

Example An example is given to simulate 10,000 first cousin pedigree (as listed in data ‘pediexample’
included in the package), based on the first locus in data ‘FortytwoSTR’:

1 pedi<−pediexample
2 af<−FortytwoSTR$afmatrix[[1]]
3 pedisimu(af=af , ss=10000,pedi=pedi)

3.4 ‘LRparas()’
The function would count or calculate parameters used in the calculation of different pairwise LR.

Input arguments 7 input arguments are needed for the function

7

• AB: A data frame of 4 columns containing the genetic information of the participants, each row denote a
single pair, and the 4 columns containing alleles a, b, c and d, respectively. The data frame can be generated
with functions ‘‘pairsimu()’’ or ‘‘pedisimu()’’, or can be directly input with function ‘data.frame()’;

• af: Allele frequency data, There are 2 acceptable types of input for the argument:

– NULL: The default set;

– <data frame>: input a data frame similar to af in ‘pairsimu()’ function;

• rare: Rare frequency data, there are 2 acceptable types of input for the argument:

– NULL: The default set;

– <numeric>: A number of rare frequency;

• stepwisePI: Whether stepwise mutation model should be considered when calculating paternity index, there
are 2 acceptable types of input for the argument:

– FALSE: The default set, take mutation rate as PI if no allele is shared between the two individuals;

– TRUE: Calculate PI considering stepwise mutation model in paternity tests;

• bred: Whether J1 ∼ J6 should be calculated, there are 2 acceptable types of input for the argument:

– FALSE: The default set, output 2 ratios: (i) Pr
(
E
∣∣J8

)/
Pr

(
E
∣∣J9

)
, i.e., paternity index which is labeled as

‘PInomu’ in the output data frame; (ii) Pr (E
∣∣J7)

/
Pr

(
E
∣∣J9

)
, i.e., likelihood ratio in personal identification

which is labeled as ‘LRid’ in the output data frame;

– TRUE: If so, the other 6 ratios in Eq. (15) would be output, labeled as ‘FD1’ → ‘FD6’, i.e., factors of
∆1 → ∆6;

• mu: The mutation rate if paternity index is calculated, with a default of 0.002;
• allelename: The data type of AB data frame, there are 2 acceptable types of input for the argument:

– FALSE To treat the values in AB data frame as row numbers in af data frame;

– TRUE To treat the values in AB data frame as allele names (row names) in af data frame.

Output value A data frame of ss rows and multiple columns, containing the combined identity by state (CIBS)
score, the 8 or 2 ratios needed in Eq. (15) or Eq. (16) in the main text, respectively, as well as PI considering
mutation.

Detailed description The function is performed as Algorithm 4. It can be seen that all these parameters are
calculated simultaneously, as a result, LR of the ss pairs can be calculated simultaneously on a single marker.

8

Algorithm 4: LRparas()
1 Conduct formal checks on the data frame AB, and stop if any error exists;
2 Calculate 1ac, 1ad, 1bc and 1bd based on AB data frame; /* † */
3 Calculate IBS score and set as the first column of the output result data frame; /* ‡ */
4 if (af=‘NULL’) OR (allelename=‘TRUE’ AND rare=1NULL’) then
5 if stepwisePI or bred is set as TRUE then
6 Report error “Please input the frequency data” and stop;
7 end
8 Output the result data frame; /* No frequency data for LR calculation */

9 else
10 Extract pc and pd; /* # */
11 Calculate LRid and PInomu (PI not considering mutation) as the 2nd and 3rd columns of the result data frame,

according to Eq. (16) in main text;
12 if All values in PInomu column >0 then
13 Set PImu=PInomu as the 4th column of the result data frame;
14 else if stepwisePI is set as TRUE /* § */ then
15 Calculate the 4 absolute differences between the two indivdiual’s alleles (a�c, a�d, b�c, and b�d),

transfer non-integer-step mutations into numbers larger than 10000;
16 Choose the minimum in the 4 differences as the minimum mutation step (s);
17 Calculate dAc and dAd as the dosage of alleles that can mutate into c and d with s steps;
18 if s=0 then
19 PImu=PInomu;
20 else if s>10000 then
21 PImu=µ, which is defined by input argument mu;
22 else
23 PImu = µ× 101−s ×

(
dAc
8pc

+ dAd
8pd

)
;

24 end
25 else
26 Calculate PImu, by taking mu as PI when no allele is shared between the two individuals;
27 end
28 if bred is set as TRUE then
29 Extract pa, calculate 1ab and 1cd;
30 Calculate the other 6 ratios in Eq. (15) as the 5th∼10th columns of the result data frame;
31 end
32 Output the result data frame
33 end

† The 1 parameters can be calculated using ‘as.duoble()’ function, take 1ac as example:
1 ac<−as.double(AB[,1]==AB[,3])

‡ The IBS score is a parameter evaluating the similarity of two individual’s genotypes. It equals to 2 if
the genotypes are identical (i.e., 1ac1bd + 1bc1ad > 0), to 0 if there is no allele sharing between them (i.e.,
1ac + 1bd + 1bc + 1ad = 0), and to 1 otherwise. Thus, the score can be calculated with following codes:

1 ibs=as.double(ac+ad+bc+bd>0)+as.double(ac*bd+ad*bc>0)

The frequency value can be extracted from af data frame according to allelename setting, then, frequency
of rare alleles should be replaced by rare value. Take pc as example:

1 if (isTRUE(allelename)) {pc<−af[as.character(AB[,3]) ,]} else {pc<−af[AB[,3],]}
2 pc[is .na(pc)]<−rare

§ When using STR markers in parentage testing, the relatively high mutation rate of these markers leads to a
greater likelihood that a true parent-child pair may not share any allele. In such cases, it is important to calculate

9

the PI considering mutation in order to prevent the erroneous exclusion of parentage. Replication slippage is
the primary cause of mutation for STR markers, and a model known as the “stepwise mutation model” has
been developed, considering that the probability of mutating s+1 steps as being one-tenth of the probability of

mutating s steps. Thus, the probability of allele x mutated to allele x+s equal to 0.5 × µ×
(

1
10

)s−1
, where the

first “0.5” denote the probability of mutating longer or shorter. And the calculation of PI considering mutation
can be performed with the following codes:

1 # Calculate the absolute difference between the two individual ’s alleles , take abs(a−c) as example
2 if (is .TRUE(allelename)) {
3 acm=abs(AB[,1]−AB[,3])+abs(AB[,1]−AB[,3])%%1*100000
4 } else {
5 an<−as.data.frame(as.numeric(row.names(af)))
6 acm=abs(an[AB[,1],]−an[AB[,3],])+abs(an[AB[,1],]−an[AB [,3],]) %%1*100000
7 }
8 # Choose the minimum mutation steps
9 steps <−pmin(acm,adm,bcm,bdm)
10 # dc and dd calculation
11 dc<−as.double(acm==steps)+as.double(bcm==steps)
12 dd<−as.double(adm==steps)+as.double(bdm==steps)
13 #PImu calculation
14 PImu<−as.double(steps==0)*para$PInomu+ # ignore mutation if step=0, i .e ., there is at least one sharing allele between the two indiviudals
15 as .double(steps>10000)*mu+ # take mutation rate as PI if there is no integer step of mutation
16 as .double(steps>0 & steps<10000)*mu*10^(1−steps)*(dc/pc+dd/pd)/8 # step wise model of mutation

Example An example is given, simulating and calculating parameters for 10,000 parent-child pairs
1 af = FortytwoSTR$afmatrix[[1]]
2 AB = pairsimu(af = af , ss = 10000, delta = c (0,1,0) , allelename = FALSE)
3 LRelements<−LRparas(AB=AB, af=af, rare=FortytwoSTR$rare[1],allelename=FALSE,stepwisePI=TRUE,bred=TRUE)

The following 4 functions are utilized to compute more intricate LR for specific identification across multiple
cases on a single marker:

3.5 ‘trioPI()’
The function would Calculate LR in standard trio cases, where 3 participants being available, a child (C), one of
his/her confirmed parent (TP), as well as an individual who is unrelated to TP and alleged to be specific relative
of the child (AR). Usually, AR is the alleged father of C, as in standard trio paternity testing. Null hypothesis,
i.e., that the alleged participant is unrelated to the child, is taken as Hd. Inbreeding factors are not considered.

Input arguments 9 input arguments are needed for the function
• AR: A data frame of 2 columns containing the genetic information of ARs;
• C: A data frame of 2 columns containing the genetic information of Cs;
• TP: A data frame of 2 columns containing the genetic information of ARs;
• af: A data frame similar to af in ‘pairsimu()’ function;
• rare: The frequency of rare alleles, which is similar to rare in ‘LRparas()’ function;
• allelename: The data type of AR, C and TP data frames, similar to allelename in ‘LRparas()’ function;
• muAtoC: Mutation rate from AR to C, if AR is alleged to be a parent of C. With a default set of 0.002, please

note that mistakes would be introduced if the mutation rate is larger than 0.2;
• muTtoC: Mutation rate from TP to C, with a default of 0.002/3.5, please note that mistakes would be

introduced if the mutation rate is larger than 0.2;
• kappa1: The κ1 between AR and C under Hp, with a default set of 1, i.e., trio paternity testing.

Output value A data frame of ss rows and 1 columns would be output, containing the log10LR of each case.

10

Detailed description The function is performed as Algorithm 5.
Algorithm 5: trioPI()
1 Conduct formal checks on the 3 genotype data frames, and stop if any error exists;
2 Extract pc and pd with similar method to code in “#” of ‘LRparas()’ function;
3 Calculate the four d parameters in Eq. (25) of the main text, each as the summation of two 1 parameters calculated

similar to code in “†” of ‘LRparas()’ function;
4 if kappa1<1 then
5 if dTPc + dTPd > 0 for all cases then
6 Calculate results directly according to Eq. (25) in the main text:
7 LR = κ1dTPcdARd+κ1dTPddARc

2dTPcpd+2dTPdpc
+ (1 − κ1)

8 else
9 Calculate results considering mutation from TP to C;

10 end
11 else
12 if dTPcdARd + dTPddARc > 0 for all cases then
13 Calculate results directly according to Eq. (27) in the main text:
14 PItrio = dMcdAFd+dMddAFc

2dMcpd+2dMdpc
/* kappa=1, i.e., trio paternity testing */

15 else
16 Calculate results condidering mutations from both TP and AR to C.
17 end
18 end

Example Examples of two type of identifications are given: trio paternity test and avuncular test with the
assistance of the child’s mother:

1 # Three types of pedigrees are simulated: pedi1: father−mother−child; pedi2: random male−mother−child; and pedi3: uncle−mother−child
2 pedi1 <− data.frame(Person=c("F","M","C"),Father=c("RI","RI","F") ,Mother=c("RI","RI","M"))
3 pedi2 <− data.frame(Person=c("F","M","C"),Father=c("RI","RI","RI") ,Mother=c("RI","RI","M"))
4 pedi3 <− data.frame(Person=c("GF","GM","AR","F","M","C"),
5 Father=c("RI","RI","GF","GF","RI","F") ,
6 Mother=c("RI","RI","GM","GM","RI","M"))
7 # Two types of LRs are calculated: PI_1 and PI_2: Paternity index for pedi1 and pedi 2; AI_1 and AI_2: Avuncular index in trio cases for pedi2

and pedi3.
8
9 PI_1=PI_2=AI_1=AI_2=data.frame(Log10CLR=rep(0,10000))
10 # Simulation are carried out based on the frequency data of the 42 STRs in FortytwoSTR dataset setting sample size as 10,000
11 for (i in 1:42) {
12 Genotype1<−pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi1)
13 PI_1<−PI_1+trioPI(AR=Genotype1[,1:2],TP=Genotype1[,3:4],
14 C=Genotype1[,5:6],af=FortytwoSTR$afmatrix[[i]],
15 rare=FortytwoSTR$rare[i])
16 Genotype2<−pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi2)
17 PI_2<−PI_2+trioPI(AR=Genotype2[,1:2],TP=Genotype2[,3:4],
18 C=Genotype2[,5:6],af=FortytwoSTR$afmatrix[[i]],
19 rare=FortytwoSTR$rare[i])
20 AI_2<−AI_2+trioPI(AR=Genotype2[,1:2],TP=Genotype2[,3:4],
21 C=Genotype2[,5:6],af=FortytwoSTR$afmatrix[[i]],
22 rare=FortytwoSTR$rare[i],kappa1=0.5)
23 Genotype3<−pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi3)
24 AI_1<−AI_1+trioPI(AR=Genotype3[,5:6],TP=Genotype3[,9:10],
25 C=Genotype3[,11:12],af=FortytwoSTR$afmatrix[[i]],
26 rare=FortytwoSTR$rare[i],kappa1=0.5)
27 }
28 #histogram of the final results
29 xmin1<−floor(min(min(PI_1$Log10CLR),min(PI_2$Log10CLR)))
30 xmax1<−ceiling(max(max(PI_1$Log10CLR),max(PI_2$Log10CLR)))
31 xmin2<−floor(min(min(AI_1$Log10CLR),min(AI_2$Log10CLR)))
32 xmax2<−ceiling(max(max(AI_1$Log10CLR),max(AI_2$Log10CLR)))
33 par(mfrow = c(2, 2))
34 hist (PI_1$Log10CLR,xlab = expression(log[10]~CPI),main = "True parentage cases" ,
35 xlim = c(xmin1,xmax1), col = "blue")

11

36 hist (AI_1$Log10CLR,xlab = expression(log[10]~CAI),main = "True avuncular cases" ,
37 xlim = c(xmin2,xmax2), col = "blue")
38 hist (PI_2$Log10CLR,xlab = expression(log[10]~CPI),main = "False pedigree in parentage cases" ,
39 xlim = c(xmin1,xmax1), col = "red")
40 hist (AI_2$Log10CLR,xlab = expression(log[10]~CAI),main = "False pedigree in avuncular cases" ,
41 xlim = c(xmin2,xmax2), col = "red")

3.6 ‘IICAL()’
The function would calculate incest index (IIφ), i.e., the ratio for a parent-child pair between the probability that
the child’s other parent is a relative of the present parent to the probability that the child’s parents are unrelated.

Input arguments 6 input arguments are needed for the function
• Parent: A data frame of 2 columns containing the genetic information of the present parent;
• Child: A data frame of 2 columns containing the genetic information of Cs;
• af: A data frame similar to af in ‘pairsimu()’ function;
• rare: The frequency of rare alleles, which is similar to rare in ‘LRparas()’ function;
• allelename: The data type of Parent and Child data frames, similar to allelename in ‘LRparas()’ function;
• phi: The kinship coefficient φ between the two parents under Hp, with a default set of 0.25, i.e., assuming

that they are parent-child pair or full-siblings.

Output value A data frame of ss rows and 2 columns would be output, containing two parameters used in
such cases: (i) Ngs: the state of genotype similarity (gs) between the parent-child pair, i.e., whether both of the
child’s two alleles can be inherited from the present parent; (ii) the log10IIφ of each case.

Detailed description The function is performed as Algorithm 6.
Algorithm 6: IICAL()
1 Conduct formal checks on the 2 genotype data frames, and stop if any error exists;
2 Extract or calculate the two d parameters and two p parameters in Eq. (20) of the main text with codes similar to

corresponding ones in ‘LRparas()’ function: IIφ = 2φdAcdAd
dAcpd+dAdpc

+ (1 − 2φ);
3 Calculate Ngs with code “Ngs<-1-as.double(dc*dd==0)”;
4 Calculate IIφ with code “IIphi<-log10(2*phi*dc*dd/(dc*pd+dd*pc)+1-2*phi)”;
5 Translate the error values (for with the parent cannot provide any of the child’s alleles) into 1-2φ.

Note that if there is no allele sharing between the two participants, IIφ cannot be calculated directly according
to Eq. (20) in the main text due to the 0 value of the denominator. In this case, (1 − 2φ) would be the output.

Example Two examples are given, simulating and calculating CII0.25 based on the 42 STRs in FortytwoSTR
dataset for 10,000 mother-child pairs when Hp and Hd in the formula is true, respectively.

1 # Construct the pedi data.frame for incest cases
2 pedi<−data.frame(Person=c("F","M","C"),Father=c("RI","F","F") ,Mother=c("RI","RI","M"))
3 II_1=II_2=data.frame(Ngs=rep(0,10000),IIphi=rep(0,10000))
4 for (i in 1:42) {
5 # Simulate 10,000 mother−child pairs with father−daughter incest with pedisimu() function
6 Genotype1<−pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi)
7 II_1<−II_1+IICAL(Parent = Genotype1[,3:4],Child = Genotype1 [,5:6], af=FortytwoSTR$afmatrix[[i]],
8 rare=FortytwoSTR$rare[i][1,1], phi=0.25)
9 #Simulate 10,000 non−inbred mother−child pairs with pairsimu() function
10 Genotype2<−pairsimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000, delta = c (0,1,0) , allelename = FALSE)
11 II_2<−II_2+IICAL(Parent = Genotype2[,1:2],Child = Genotype2 [,3:4], af=FortytwoSTR$afmatrix[[i]],
12 rare=FortytwoSTR$rare[i][1,1], phi=0.25)
13 }
14 # histograms of CII distributions in the two groups
15 xmin<−floor(min(min(II_1$IIphi),min(II_2$IIphi)))
16 xmax<−ceiling(max(max(II_1$IIphi),max(II_2$IIphi)))

12

17 par(mfrow = c(1, 2))
18 hist (II_2$IIphi , xlab = expression(log [10]~CII) ,main = "Non−inbreed cases" ,
19 xlim = c(xmin,xmax), col = "red")
20 hist (II_1$IIphi , xlab = expression(log [10]~CII) ,main = "Inbreed cases" ,
21 xlim = c(xmin,xmax), col = "blue")

3.7 ‘LRhsip()’
The function would calculate LR for cases in which a pair of siblings (labeled as A and B, with genotype ab and
cd, respectively) and one of their identical parent participated (labeled as P with genotype ef). Hp and Hd are
set as "the other parents of the two siblings are specific related" and "the other parents of them are unrelated",
respectively. Inbreeding factors are not taken into consideration.

Derivation of LR in the identification Regard sibling B as individual B, and the other two individuals as R
in Eq. (21) of the main text. Similar to “standard” non-inbred trio cases in section 2.4.2 of the main text, the
relationship between P and A would remain unchanged in both hypotheses if not considering inbreeding factors,
thus, similarly

LR =

∑
j

[
Pr

(
B ≡ Gj

∣∣A, P, Hp
)
× Pr

(
Gj ≡ cd

)]
∑

k

[
Pr

(
B ≡ Gk

∣∣A, P, Hd
)
× Pr

(
Gk ≡ cd

)] (S2)

Under Hd, the non-participated parent of sibling B is unrelated to both P and sibling A, the allele he/she
passed to sibling B must be xI from the perspective of IBD alleles. Thus, there are two types of sibling B’s IBD
genotype with equal probabilities, eIxI and fIxI .

Under Hp, the distribution of sibling B’s IBD genotype can be derived as follows: (i) derive the IBD genotype
distribution of sibling A’s non-participated parent (labeled as NPA); (ii) derive the IBD genotype distribution of
sibling B’s non-participated parent (labeled as NPB); and (iii) derive sibling B’s IBD genotype.

Pr
(
B ≡ Gj

∣∣A, P, Hp
)

=
∑

x

[
Pr

(
NPA ≡ Gx

∣∣A, P, Hp
)
× Pr

(
B ≡ Gj

∣∣NPA ≡ Gx, A, P, Hp
)]

Pr
(
B ≡ Gj

∣∣NPA ≡ Gx, A, P, Hp
)

=
∑

y

[
Pr

(
NPB ≡ Gy

∣∣NPA ≡ Gx, A, P, Hp
)
× Pr

(
B ≡ Gj

∣∣NPB ≡ Gy, NPA ≡ Gx, A, P, Hp
)] (S3)

(i) If not considering mutation, the IBD genotype of NPA must be aIxI or bIxI , the probabilities of which can
be calculated with Bayes’ rules:

Pr
(
NPA ≡ aIxI

∣∣A, P, Hp
)

=
Pr

(
NPA ≡ aIxI

∣∣P, Hp
)
× Pr

(
A
∣∣NPA ≡ aIxI , P, Hp

)
Pr

(
NPA ≡ aIxI

∣∣P, Hp
)
× Pr

(
A
∣∣NPA ≡ aIxI , P, Hp

)
+ Pr

(
NPA ≡ bIxI

∣∣P, Hp
)
× Pr

(
A
∣∣NPA ≡ bIxI , P, Hp

)
(S4)

Where Pr
(
NPA ≡ aIxI

∣∣P, Hp
)

= Pr (NPA ≡ aIxI) = pa under non-inbred assumption. And because of the
same assumption, the allele b of sibling A must inherited from P, i.e., Pr

(
A
∣∣NPA ≡ aIxI , P, Hp

)
∝ dPb. Thus,

Pr
(
NPA ≡ aIxI

∣∣A, P, Hp
)

=
padPb

padPb + pbdPa

Pr
(
NPA ≡ bIxI

∣∣A, P, Hp
)

=
pbdPa

padPb + pbdPa

(S5)

(ii) Under Hp, NPB should be unrelated to P and the relationship between him/her with sibling A should hap-
pened through NPA, i.e., the genotype of P and sibling A should be useless for the IBD genotype inference of NPB
when the IBD genotype of NPA is given, i.e., Pr

(
NPB ≡ Gy

∣∣NPA ≡ Gx, A, P, Hp
)

= Pr
(
NPB ≡ Gy

∣∣NPA ≡ Gx, Hp
)

.

13

If no inbreeding factor is considered, the relationship between NPA and NPB can be described by κ ={
κ0,κ1,κ2

}
. It can be seen that, if NPB ≡ aIxI as example, there can be 2 types of NPB’s IBD geno-

type, aIxI and xIyI , with probabilities of κ2 + κ1/2 = 2φ and κ02 + κ1/2 = (1 − 2φ), respectively, if φ denotes
the kinship coefficient between NPA and NPB; Similarly, if NPB ≡ bIxI as example, NPB’s IBD genotype can
be bIxI or xIyI , with probabilities of 2φ and (1 − 2φ), respectively;

(iii) Similar to the inference of NPB’s IBD genotype, NPA and sibling A’s genotypes are useless for the IBD
genotype inference of sibling B when the IBD genotype of NPB and P are given, i.e.,

Pr
(
B ≡ Gj

∣∣NPB ≡ Gy, NPA ≡ Gx, A, P, Hp
)

= Pr
(
B ≡ Gj

∣∣NPB ≡ Gy, A, Hp
)

(S6)

In summary, there can be 6 types of sibling B’s IBD genotype, the inference process is listed in Table S2:

Table S2: Sibling B’s IBD genotype

B NPA Pr
(
NPA ≡ aIxI

∣∣A, P, Hp
)

NPB Pr
(
NPB ≡ Gy

∣∣NPA ≡ Gx, Hp
)

Pr1
∗ Total Probability

aIeI aIxI
padPb

padPb+pbdPa
aIxI 2φ 1

4
φpadPb

2padPb+2pbdPa

aI fI aIxI
padPb

padPb+pbdPa
aIxI 2φ 1

4
φpadPb

2padPb+2pbdPa

bIeI bIxI
pbdPa

padPb+pbdPa
bIxI 2φ 1

4
φpbdPa

2padPb+2pbdPa

bI fI bIxI
pbdPa

padPb+pbdPa
bIxI 2φ 1

4
φpbdPa

2padPb+2pbdPa

eIxI

aIxI
padPb

padPb+pbdPa

aIxI 2φ 1
4

1−φ
2

xIyI 1 − 2φ 1
2

bIxI
pbdPa

padPb+pbdPa

bIxI 2φ 1
4

xIyI 1 − 2φ 1
2

fIxI

aIxI
padPb

padPb+pbdPa

aIxI 2φ 1
4

1−φ
2

xIyI 1 − 2φ 1
2

bIxI
pbdPa

padPb+pbdPa

bIxI 2φ 1
4

xIyI 1 − 2φ 1
2

∗ Pr1 = Pr
(
B ≡ Gj

∣∣NPB ≡ Gy, A, Hp
)

;

With calculation similar to Eq. (24) in the main text, it can be derived that

LR =
φpadPb

(
1acdPd + 1addPc

)
+ φpbdPa

(
1bcdPd + 1bddPc

)(
dPapb + dPbpa

) (
dPcpd + dPdpc

) + (1 − φ) (S7)

According to the equation, the function ‘LRhsip()’ is constructed.

Input arguments 7 input arguments are needed for the function
• A: A data frame of 2 columns containing the genetic information of individual As;
• B: A data frame of 2 columns containing the genetic information of individual Bs;
• P: A data frame of 2 columns containing the genetic information of the identical parents;
• af: A data frame similar to af in ‘pairsimu()’ function;
• rare: The frequency of rare alleles, which is similar to rare in ‘LRparas()’ function;

14

• allelename: The data type of A, B and P data frames, similar to allelename in ‘LRparas()’ function;
• phi: The kinship coefficient φ between the non-participant parents of the two half-siblings under Hp, with a

default set of 0.5, i.e., assuming that individual A is a full-sibling of individual B.

Output value A data frame of ss rows and 1 columns would be output, containing the log10LR of each case.

Detailed description The function is performed as Algorithm 7.
Algorithm 7: LRhsip()
1 Conduct formal checks on the 3 genotype data frames, and stop if any error exists;
2 Extract or calculate the d parameters, 1 parameters, and p parameters in Eq. (S7) with codes similar to

corresponding ones in ‘LRparas()’ function;
3 Calculate LR according to Eq. (S7);
4 Transfer error values, i.e., where no allele shared between P with A or B, into (1 − φ);
5 Transfer the LR value into log10LR value.

Note that if there is no allele sharing between P with A or B, LR cannot be calculated directly according to
Eq. (S7) due to the 0 value of the denominator. In this case, (1 − φ) would be the output.

Example Two examples are given, simulating and calculating LR with φ = 0.5 for 10,000 A-B-P groups when
Hp (A is full-sibling to B) and Hd (NPA is unrelated to NPB) in the formula is true, respectively.

1 # Construct pedi data.frames for two types of pedigrees
2 pedi1 <− data.frame(Person=c("F","M","A","B"),
3 Father=c("RI","RI","F","F") ,
4 Mother=c("RI","RI","M","M"))
5 pedi2 <− data.frame(Person=c("M","A","B"),
6 Father=c("RI","RI","RI") ,
7 Mother=c("RI","M","M"))
8 LR_1=LR_2=data.frame(Log10CLR=rep(0,10000))
9 for (i in 1:42) {
10 # Simulate 10000 groups of A/B/P where A is full sibiling of B
11 Genotype1=pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi1)
12 LR_1=LR_1+LRhsip(A=Genotype1[,5:6],B=Genotype1[,7:8],P=Genotype1[,3:4],
13 af = FortytwoSTR$afmatrix[[i]], rare=FortytwoSTR$rare[i][1,1])
14 # Simulate 10000 groups of A/B/P where A is half sibling of B, i .e ., the true phi=0
15 Genotype2=pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi2)
16 LR_2=LR_2+LRhsip(A=Genotype2[,3:4],B=Genotype2[,5:6],P=Genotype2[,1:2],
17 af = FortytwoSTR$afmatrix[[i]], rare=FortytwoSTR$rare[i][1,1])
18 }
19 # histograms of CLR distributions in the two groups
20 xmin<−floor(min(min(LR_1$Log10CLR),min(LR_2$Log10CLR)))
21 xmax<−ceiling(max(max(LR_1$Log10CLR),max(LR_2$Log10CLR)))
22 par(mfrow = c(1, 2))
23 hist (LR_2$Log10CLR,xlab = expression(log[10]~CLR),main = "Fault pedigree",
24 xlim = c(xmin,xmax), col = "red")
25 hist (LR_1$Log10CLR,xlab = expression(log[10]~CLR),main = "True cases",
26 xlim = c(xmin,xmax), col = "blue")

3.8 ‘LRgpgcam()’
The function will compute the likelihood ratio for grandparentage determination using the reference of an uncle
or aunt. In such scenarios, a child (C, with genotype cd) is claimed to be the grandchild of another individual (GP,
with genotype ef), and the offspring (A, with genotype ab) of the alleged grandparent is involved. Additionally,
the genetic information of B’s other parent (M, with genotype gh) may or may not be available. Hp assumes that
B is the offspring of A’s full sibling, and Hd assumes that B is not related to GP and A. The consideration of
inbreeding is not included.

15

Derivation of LR in the identification Similar to the derivation in ‘LRhsip()’ function, C can be regarded as
individual B in Eq. (21) of the main text and the relationship among other individuals would remain unchanged.
Additionally, the genotype of GP and A is unrelated to C’s IBD genotype under Hd. Thus,

LR =

∑
j

[
Pr

(
C ≡ Gj

∣∣A, GP, M, Hp
)
× Pr

(
Gj ≡ cd

)]
∑

k

[
Pr

(
C ≡ Gk

∣∣M, Hd
)
× Pr

(
Gk ≡ cd

)] (S8)

If label C’s other parent (i.e, GP’s offspring and A’s full-sibling) as NP, Pr
(
C ≡ Gj

∣∣A, GP, M, Hp
)

can
be calculated as follows. Note that the individuals useless in specific reference have been removed from
corresponding probabilities.

Pr
(
C ≡ Gj

∣∣A, GP, M, Hp
)

=
∑

x

[
Pr

(
NP ≡ Gx

∣∣A, GP, Hp
)
× Pr

(
C ≡ Gj

∣∣NP ≡ Gx, M, Hp
)]

(S9)

It is clear that GP, A, and NP can be referred to as P, sibling A, and sibling B respectively in the context of
identifying 3.7, and the distribution of NP’s IBD genotype is illustrated in Table S2. Hence, there may be 10 or
5 variations of C’s IBD genotypes, based on the presence or absence of M, and consequently, the LR can be
computed as follows if M is available:

LR =
dGPcdMd + dGPddMc

4pcdMd + 4pddMc
+

padGPb
(
1acdMd + 1addMc

)
+ pbdGPa

(
1bcdMd + 1bddMc

)
4
(
padGPb + pbdGPa

) (
pcdMd + pddMc

) +
1
4

(S10)

If M is unavailable,

LR =
dGPc
8pc

+
dGPd
8pd

+
padGPb1ac + pbdGPa1bc
8pc

(
padGPb + pbdGPa

) +
padGPb1ad + pbdGPa1bd
8pd

(
padGPb + pbdGPa

) +
1
4

(S11)

It can be seen that the Eq. (S10) can be transferred into Eq. (S11) by replacing dMc and dMd with pc and pd,
respectively. According to the equation, the function ‘LRgpgcam()’ is constructed.

Input arguments 7 input arguments are needed for the function
• A: A data frame of 2 columns containing the genetic information of individual As;
• C: A data frame of 2 columns containing the genetic information of individual Cs;
• GP: A data frame of 2 columns containing the genetic information of individual GPs;
• M: NULL or a data frame of 2 columns containing the genetic information of individual Ms;
• af: A data frame similar to af in ‘pairsimu()’ function;
• rare: The frequency of rare alleles, which is similar to rare in ‘LRparas()’ function;
• allelename: The data type of the 4 genotype data frames, similar to allelename in ‘LRparas()’ function;

Output value A data frame of ss rows and 1 columns would be output, containing the log10LR of each case.

Detailed description The function is performed as Algorithm 8.

16

Algorithm 8: LRgpgcam()
1 Conduct formal checks on the 3 genotype data frames containing genotypes, and stop if any error exists;
2 Extract the 4 p values in Eq. (S10) with method similar to “#” in ‘LRparas()’ function;
3 if M̸=‘NULL’ then
4 Conduct formal checks on M data frame, stop if error;
5 Calculate dMc and dMd;
6 else
7 Set dMc = pc and dMd = pd;
8 end
9 Calculate other d or 1 parameters;

10 Calculate the LR results according to Eq. (S10).

The three parts of Eq. (S10) correspond to the three scenarios of C’s inheritance under Hp: i) C’s paternal
allele originated from one of GP’s two alleles; ii) C’s paternal allele is IBD to the allele NP passed to A ; and
iii) C’s paternal allele is IBD to the allele NP not passed to A. In the first two components, two factors appear
within the denominator:

(
padGPb + pbdGPa

)
and

(
pcdMd + pddMc

)
, which would equal 0 when there is no allele

sharing between GP-A and M-C pairs, respectively. Such 0 values would occur due to mutation or the false
relationship between the corresponding, and if so, the parts with 0 value in the denominator would be treated as
0 in the LR calculation equation. The output value of LR would have a minimum value of 1/4 because of part iii)
in the formula.

Example Two examples are given, simulating and calculating CLR based on the 42 STRs in FortytwoSTR
dataset, for 10,000 A-C-GP-P groups when Hp and Hd in the formula is true, respectively.

1 # Construct pedi data.frames for two types of pedigrees
2 pedi1 <− data.frame(Person=c("GF","GM","F","A","M","C"),
3 Father=c("RI","RI","GF","GF","RI","F") ,
4 Mother=c("RI","RI","GM","GM","RI","M"))
5 pedi2 <− data.frame(Person=c("GF","GM","F","A","M","C"),
6 Father=c("RI","RI","RI","GF","RI","F") ,
7 Mother=c("RI","RI","RI","GM","RI","M"))
8 LR_1=LR_2=data.frame(Log10CLR=rep(0,10000))
9 for (i in 1:42) {
10 # Simulate 10000 group of pedigrees where the Hp is true
11 Genotype <− pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi1)
12 LR_1 <−LR_1+ LRgpgcam(A=Genotype[,7:8],C=Genotype[,11:12],GP=Genotype[,1:2],M=Genotype[,9:10],
13 af=FortytwoSTR$afmatrix[[i]], rare=FortytwoSTR$rare[i][1,1])
14 #’#Simulate 10000 group of false pedigrees, i .e ., P and C is unrelated to GP and A
15 Genotype <− pedisimu(af = FortytwoSTR$afmatrix[[i]], ss = 10000,pedi = pedi2)
16 LR_2 <−LR_2+ LRgpgcam(A=Genotype[,7:8],C=Genotype[,11:12],GP=Genotype[,1:2],M=Genotype[,9:10],
17 af=FortytwoSTR$afmatrix[[i]], rare=FortytwoSTR$rare[i][1,1])
18 }
19 # histograms of CLR distributions in the two groups
20 xmin<−floor(min(min(LR_1$Log10CLR),min(LR_2$Log10CLR)))
21 xmax<−ceiling(max(max(LR_1$Log10CLR),max(LR_2$Log10CLR)))
22 par(mfrow = c(1, 2))
23 hist (LR_2$Log10CLR,xlab = expression(log[10]~CLR),main = "Fault pedigree",
24 xlim = c(xmin,xmax), col = "red")
25 hist (LR_1$Log10CLR,xlab = expression(log[10]~CLR),main = "True cases",
26 xlim = c(xmin,xmax), col = "blue")

3.9 ‘logLR()’
The function would calculate parameters for a single pairwise case, including CIBS score and multiple types of
log10CLR.

Input arguments 8 input arguments are needed for the function

17

• AB: A data frame of 4 columns containing the genetic information of the two individuals, each two columns
for each; Each row of the data frame contains the information of the four allele on a marker, the name of
which should be set as the row names. Note that all the row names of this data frame should be included in the
data frame names of list afmatrix and column names of data frame rare, otherwise, the function would report
an error;

• afmatrix: NULL or a list of multiple data frames containing allele frequency data on multiple markers, which
can be generated using 3.1 function. The data frame names should be marker names. For each data frame,
there should be 1 column and multiple rows, the column name should be ’Freq’ and row names should be
allele names on the corresponding marker.

• rare: NULL or a data frame of 1 row and multiple columns, containing frequency of rare alleles on each
marker. The column names should be the name of each marker;

• allelename: The data type of the genotype data frame, similar to allelename in ‘LRparas()’ function;
• stepPI: Setting of mutation calculation method similar to stepwisePI in ‘LRparas()’ function;
• adelta3: Distributions of the IBD coefficient of multiple outbred Hp in LR calculation, which should be a

data.frame with 3 columns and x rows, where x denote the number of such LRs being calculated. The names
of columns should be ‘k0’, ‘k1’ and ‘k2’, and the names of rows should be the names of each LR. If no outbred
LR is needed, set as NULL;

• adelta9: Distributions of the IBD coefficient of multiple inbred Hp in LR calculation, which can be input
similar to argument‘adelta3’, and the column names should be ‘D1’ to ‘D9’. If no inbred LR is needed, set as
NULL;

• mu: mutation rate in parentage testing, with a default of 0.002

Output value A list of 2 data frames would be output: (i) “results_on_each_marker”: a data frame containing
calculation results on each marker, with nl rows and multiple columns, each row for a marker and each column
for a type of parameter, including IBS and multiple log10 values of LRs; (ii) ”total_results_of_the_case”: a data
frame of 1 column and multiple rows, containing the CIBS and log10CLR results for the whole case.

Detailed description The function is performed as Algorithm 9.

18

Algorithm 9: logLR()
1 Conduct formal checks on the input arguments, and stop if any error exists;
2 Calculate IBS score on each marker as the 1st column of “results_on_each_marker” data frame, with method

similar to “‡” of ‘LRparas()’ function;
3 if adelta3=adelta9=NULL then
4 Output “results_on_each_marker” directly;
5 else
6 Extract pc and pd with a for loop; /* † */
7 Calculate LRid and PInomu, as well as PImu according to stepPI setting, similar to ‘LRparas()’ function;
8 if adelta9=NULL then
9 for i=1:(row number of adelta3) do

10 Calculate log10LR with LRid, PInomu or PImu, according to κ distribution of the ith row of adelta3;
11 Bind the result with “results_on_each_marker” data frame as the (i+1) column;
12 end
13 else
14 Extract or calculate pa, 1ab and 1cd;
15 Calculate the factors of ∆1 ∼ ∆6 in Eq. (15) of the main text;
16 if adelta3=NULL then
17 for i=1:(row number of adelta9) do
18 Calculate log10LR with the LRid, PInomu or PImu, and the 6 factors in line 15, according to ∆

distribution of the ith row of adelta9;
19 Bind the result with “results_on_each_marker” data frame as the (i+1) column;
20 end
21 else
22 Calculate outbred and inbred log10LRs one type by one type with two for loops;
23 end
24 end
25 end
26 Construct ”total_results_of_the_case” data frame, by calculate total results of each parameters in

“results_on_each_marker” data frame using “as.data.frame(colSums(...))” code;
27 Output the 2 data frames “results_on_each_marker” and ”total_results_of_the_case” as a list.

‡ Frequency data would be extracted differently from single locus functions such as ‘LRparas()’, as the
frequency data are different among markers. “For()” loop would be needed and the code would differ according
to allelename setting. Take pc as example:

1 if (isTRUE(allelename)) {
2 for (i in 1:nl) {
3 para$pc[i]<−afmatrix[[rownames(AB)[i]]][as.character(AB[i,3]) ,]
4 if (is .na(para$pc[i])){
5 para$pc[i]<−rare [[rownames(AB)[i]]]
6 }
7 }
8 } else{
9 for (i in 1:nl) {
10 para$pc[i]<−afmatrix[[rownames(AB)[i]]][AB[i,3],]
11 if (is .na(para$pc[i])){
12 para$pc[i]<−rare [[rownames(AB)[i]]]
13 }
14 }
15 }

Example An example is given, simulating and calculating CLR for a pairwise case:
1 AB<−data.frame(a=rep(0,42),b=rep(0,42),c=rep(0,42),d=rep(0,42))
2 for (i in 1:42) {
3 temp<−pairsimu(af = FortytwoSTR$afmatrix[[i]], ss = 1, delta = c (0,1,0) , allelename = TRUE)

19

4 AB[i,]=temp
5 rownames(AB)[i]=names(FortytwoSTR$afmatrix)[i]
6 }
7 adelta3 <−data.frame(k0=c (0,0.25,0.5) ,k1=c (1,0.5,0.5) ,k2=c (0,0.25,0) ,row.names = c("PC","FS","HS"))
8 adelta9 <−data.frame(D1=0,D2=0,D3=0,D4=0,D5=0.25,D6=0,D7=0.25,D8=0.5,D9=0,row.names = "FIMCpair")
9 results <−logLR(AB=AB,afmatrix=FortytwoSTR$afmatrix,rare=FortytwoSTR$rare,stepPI=TURE,adelta3=adelta3,adelta9=adelta9)

3.10 ‘testsimulation()’
An all-in-one simulating and calculating solution for kinship analysis: Combining the genotype generating
and LR calculating functions, a integrated function is given for the batch simulation and calculation in kinship
analysis, which can generate genotype combinations of multiple individual pairs with specific relationship on
multiple independent markers and then calculate multiple types of CLR for each pair.

Input arguments 8 input arguments are needed for the function
• afmatrix: The allele frequency data utilized in the simulation and calculation, which is in a format similar to

the afmatrix in the ‘logLR()’ function, with the exception that the argument cannot be NULL.
• ss: The sample size to be simulated;
• tdelta: The distribution of ∆ or κ describing the true relation between the simulated individuals;
• stepPI: Setting of mutation calculation method similar to stepwisePI in ‘LRparas()’ function;
• adelta3: Similar to adelta3 in ‘logLR()’ function;
• adelta9: Similar to adelta9 in ‘logLR()’ function;
• pedname: The name of the simulated relationship;
• mu: mutation rate in parentage testing, with a default of 0.002.

Output value The output of this function will be a data.frame consisting of ss rows and multiple columns.
Each row in the data.frame will correspond to the calculation results of a simulated pair defined by the following
code. The first column will contain the relation name defined by the argument ‘pedname’, while the second
column will contain the CIBS value for each pair. The remaining columns will contain the 10 logarithms of
multiple types of LRs defined by the arguments ‘adelta3’ and ‘adelta9’.

Detailed description The function will conduct an idealized simulation using allele frequency of multiple
markers. Typically, such simulations are useful for the initial assessment of a specific identification panel. Due
to its primary nature, some confounding factors are disregarded in the coding of this function, such as excluding
mutation factors when generating simulated individuals, which results in rare alleles not being generated and
hence, the frequency of rare alleles does not need to be considered. The function is performed as Algorithm 10.

Algorithm 10: testsimulation()
1 Conduct formal check on the input delta values, and stop if any error exists;
2 Extract nl as the number of data frames contained in afmatrix list;
3 Construct the "result" data frame with ss rows and a number of columns determined by the adelta3 and adelta9

settings. Set all values in the data frame to 0;
4 for i=1:nl do
5 Generate genotypes for ss individual pairs according to the relationship described by tdelta, based on the

frequency data contained in the ith data frame of the afmatrix list, using the ‘pairsimu()’ function;
6 Calculate CIBS and multiple log10LR values according to the adelta3, adelta9, stepPI, and mu settings, using

the ‘LRparas()’ function;
7 Sum the calculation results with the updated "result" data frame;
8 end
9 Output the “result” data frame.

20

Example An example is given, simulating and calculating 4 types of CLRs for 10,000 parent-child pairs, based
on the 42 STRs in FortytwoSTR dataset:

1 adelta3 <−data.frame(k0=c (0,0.25,0.5) ,k1=c (1,0.5,0.5) ,k2=c (0,0.25,0) ,row.names=c("PC","FS","HS"))
2 adelta9 <−data.frame(D1=0,D2=0,D3=0,D4=0,D5=0.25,D6=0,D7=0.25,D8=0.5,D9=0,row.names="FIMCpair")
3 data(FortytwoSTR)
4 results <− testsimulation (afmatrix=FortytwoSTR[["afmatrix"]], ss=10000, tdelta =c (0,1,0) , adelta3 =adelta3 , adelta9 =adelta9 ,pedname="PC")
5 results $ total _ results _of_the_case

3.11 ‘outputCSV()’
The function would output population data such as “FortytwoSTR” into .csv files, which can be used for
‘EvaluatePanel()’ function.

Input arguments 2 input arguments are needed for the function
• data: The name of a list of 4 data frames in format similar to “FortytwoSTR”;
• strpath: The pathway to output the resulting .csv file;

Output value A .csv file in ISFG format, i.e., put allele frequency data in the cells right and down to B2

Detailed description The function is performed as Algorithm 11.
Algorithm 11: outputCSV()
1 Conduct formal check on the input delta values, and stop if the data list is not in format similar to FortytwoSTR;
2 Extract nl as the number of data frames contained in ‘afmatrix’ list;
3 Extract allele names into a one-column data frame ‘allelenames’ from the row names of the data frames contained

in ‘afmatrix’ list;
4 Remove the duplicate in ‘allelenames’ data frame and sort it from small to large, set the row number of

‘allelenames’ as maxa;
5 Construct a data frame “results” with (1+nl) columns and (1+maxa) rows, set column names as the marker names,

data in the 1st column as ‘allelenames’; for i=1:nl do
6 Extract the allele frequencies on the ith marker into the (i+1)th column of ‘results’ data frame and replace the

NA values with 0;
7 end
8 Extract the number of individual on each marker into the last row; Outout the result data frame

Example An example is given, outputting the FortytwoSTR data into a .csv file:
1 path<−tempdir()
2 outputCSV(FortytwoSTR,file.path(path,’ data .csv’))

4 Data involved

4.1 FortytwoSTR
A list of 4 data frames, containing the allele frequency data for the Chinese Han population on a 42-plex STR
panel, along with forensic parameters. The list is created using the ‘EvaluatePanel()’ function with the default
settings, which are: (i) utilizing the values in the last row as the sample size in the population survey; (ii)
computing frequencies of rare alleles using the ’ISFG’ method.

1 FortytwoSTR<−EvaluatePanel(strpath = " https : / /raw. githubusercontent .com/Guanju−Ma/data111/main/42STR.csv")

21

4.2 pediexample
A data frame containing an example of the input form of pedi argument used in ‘pedisimu()’ function, which is
generated with the following code:

1 pediexample<−data.frame(Person=c("GF","GM","F1","F2","M1","M2","A","B"),
2 Father=c("RI","RI","GF","GF","RI","RI","F1","F2") ,
3 Mother=c("RI","RI","GM","GM","RI","RI","M1","M2"))

which results in a data frame as follows:

Person Father Mother
##1 “GF” “RI” “RI”
##2 “GM” “RI” “RI”
##3 “F1” “GF” “GM”
##4 “F2” “GF” “GM”
##5 “M1” “RI” “RI”
##6 “M2” “RI” “RI”
##7 “A” “F1” “M1”
##8 “B” “F2” “M2”

22

	Brief introduction
	Install and library the KINSIMU package
	Functions in the package
	`EvaluatePanel()'
	`pairsimu()'
	`pedisimu()'
	`LRparas()'
	`trioPI()'
	`IICAL()'
	`LRhsip()'
	`LRgpgcam()'
	`logLR()'
	`testsimulation()'
	`outputCSV()'

	Data involved
	FortytwoSTR
	pediexample

